Motexafin-gadolinium taken up in vitro by at least 90% of glioblastoma cell nuclei.

نویسندگان

  • Gelsomina De Stasio
  • Deepika Rajesh
  • Judith M Ford
  • Matthew J Daniels
  • Robert J Erhardt
  • Bradley H Frazer
  • Tolek Tyliszczak
  • Mary K Gilles
  • Robert L Conhaim
  • Steven P Howard
  • John F Fowler
  • François Estève
  • Minesh P Mehta
چکیده

PURPOSE We present preclinical data showing the in vitro intranuclear uptake of motexafin gadolinium by glioblastoma multiforme cells, which could serve as a prelude to the future development of radiosensitizing techniques, such as gadolinium synchrotron stereotactic radiotherapy (GdSSR), a new putative treatment for glioblastoma multiforme. EXPERIMENTAL DESIGN In this approach, administration of a tumor-seeking Gd-containing compound would be followed by stereotactic external beam radiotherapy with 51-keV photons from a synchrotron source. At least two criteria must be satisfied before this therapy can be established: Gd must accumulate in cancer cells and spare the normal tissue; Gd must be present in almost all the cancer cell nuclei. We address the in vitro intranuclear uptake of motexafin gadolinium in this article. We analyzed the Gd distribution with subcellular resolution in four human glioblastoma cell lines, using three independent methods: two novel synchrotron spectromicroscopic techniques and one confocal microscopy. We present in vitro evidence that the majority of the cell nuclei take up motexafin gadolinium, a drug that is known to selectively reach glioblastoma multiforme. RESULTS With all three methods, we found Gd in at least 90% of the cell nuclei. The results are highly reproducible across different cell lines. The present data provide evidence for further studies, with the goal of developing GdSSR, a process that will require further in vivo animal and future clinical studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repression of Matrix Metalloproteinases and Cytokine Secretion in Glioblastoma by Targeting K+ Channel: An in Vitro Study

Introduction: Glioblastoma is an aggressive malignancy of human brain with poorly understood pathogenesis. Voltage-gated potassium (Kv) channels and Matrix metalloproteinases (MMPs) are highly expressed in malignant tumors and involved in the progression and metastasis of glioblastoma. The purpose of this study was to determine whether a voltage-dependent potassium channel blocker could modulat...

متن کامل

New polyethyleneglycol-functionalized texaphyrins: synthesis and in vitro biological studies.

The synthesis of four new analogues of motexafin gadolinium (MGd), a gadolinium(III) texaphyrin complex in clinical trials for its anticancer properties, is described. These new derivatives contain either 1,2-diaminobenzene or 2,3-diaminonaphthalene subunits as the source of the imine nitrogens and bear multiple 2-[2-(2-methoxyethoxy)ethoxy]ethoxy (PEG) groups, on either meso aryl or beta-pyrro...

متن کامل

Giant Cell Glioblastoma -A Rare Pediatric Cerebral Neoplasm

Giant cell glioblastoma is an extremely rare variant of Glioblastoma (WHO grade IV) which is characterized by a predominance of bizarre, multinucleated giant cells. These tumors comprise of 0.8% of brain tumors and up to 5% of glioblastomas. In pediatric age group, these tumors are still uncommon with only around 53 published cases since 1952. Here, we report a case of a 12-year old female pat...

متن کامل

Motexafin gadolinium-induced cell death correlates with heme oxygenase-1 expression and inhibition of P450 reductase-dependent activities.

Heme oxygenase-1 (HO1), which oxidizes heme to biliverdin, CO, and free iron, conveys protection against oxidative stress and is antiapoptotic. Under stress conditions, some porphyrin derivatives can inhibit HO1 and trigger cell death. Motexafin gadolinium (MGd) is an expanded porphyrin that selectively targets cancer cells through a process of futile redox cycling that decreases intracellular ...

متن کامل

Motexafin gadolinium enhances p53-Mdm2 interactions, reducing p53 and downstream targets in lymphoma cell lines.

BACKGROUND Loss of p53 renders cells more susceptible to acute oxidant stress induced by oxidant-generating agents such as motexafin gadolinium (MGd). We hypothesized that reactive oxygen species (ROS)-generating MGd results in low-level p53 expression, making cells more susceptible to oxidant stress. MATERIALS AND METHODS Lymphoma cells were incubated with different concentrations of MGd wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2006